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SUMMARY

The flow over infinite wedges 1is Investlgated theoretically to test
8 conclusion previously reached by the use of Schlichting's approximate
method for the calculation of the laminar boundary layer; namely, that
in a region of falling pressure & thick velocity profile can be more
stable than a thin profile glthough the velocity at the edge of the
boundary layer and the pressure gradient are the same for both profiles.
By the use of the velocity profiles obtained by Hartree from a numerical
solution of the boundary-leyer equations for wedge flows and by the use
of Lin's rapid method for the calculation of the critical Reynolds num-
ber of a velocity profile, the result is obtalned that a thick velocity
profile on one wedge can be more stable than & thinner proflle on a
wedge of different angle although the velocity outside the boundary
layer and the pressure gradient are the same for both profiles. This
result agrees with, and hence confirms, a conclusion reached by the use
of Schlichting's approximate method.

The investigation also leads to the inference that the calculated
effects of a change in boundary-layer thickness on the stability and
on the local roughness Reynolds number should be essentially unchanged
by replecing the Schlichting single-paremeter famlly of velocity pro-
files by the Hartree single~parameter family of velocity profiles.

INTRODUCTION

Experimental investigations have shown that large extents of laminar
flow can be obtained on airfoils by making the pressure decrease along the
surface in the direction of flow, by drawing part of the boundary layer
into the ailrfoil interior either through a porous airfoil surface or
through slots cut into the surface, or by a combination of these methods.
The experiments, however, moke it clear that, to avoid early transition
to turbulent flow, the surface must be free of noticeable roughness par-
ticles and other departures from smoothness.
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The indications are that the disturbing effect of a roughness par-
ticle can be decreased by an increase in the thickness of the boundary
layer. An increage in boundary-layer thickness, however, increases the
boundary-layer Reynolds number and, if the shape of the velocity profile
is unchanged, decreases the ratioc of the local critical Reynolds number
to the local boundary-layer Reynolds number. The assumption is made that
the ratio of the local critical Reynolds number (a2 function of the shape
of the velocity profile only) to the local boundary-layer Reynolds num-
ber is & measure of the steblility; the stebility decreases as this ratio
decreases. For a fixed velocity-profile shape, the stablility of the
boundary layer thus decreases as the thickness increases.

The shape of the velocity profile and the thickness of the boundary
layer at a point on a porous or nonporous surface with an arbitrary pres-
sure distribution can be calculated approximately by the Schlichting
method (ref. 1). This method states that on an impervious surface the
shape of the velocity profile is determined by the local effective pres-
sure gradient; this gradient is directly proportional to the product of
the actual pressure gradient and the square of the boundary-layer thick.
ness. It 1s gpparent, therefore, that in a reglon of felling pressure
the Schlichting method predicts that an increase in boundary-layer thick-
ness increases the effective pressure gradient and thus results in a
more convex veloclty profile. Because the increase in convexity is known
to 1mply an increase in the critical boundary-layer Reynolds number, it
would gppear that an Ilncrease Iin boundary-layer thickness could increase
the local critical Reynolds number more than the local boundery-layer
Reynolds number.

The computations of reference 2, which were made to investigate
this possibility, led to the result that where the pressure decreases
along an impermesble surface an increase in boundery-layer thickness
at a point can, because of the resulting increase in effective pressure
gradient, change the velocity-profile shape enough to increase the ratio
of the local critical Reynolds number to the local boundary-layer Reynolds
number, and hence increase the stability.

Because the results of reference 2 follow from the Schlichting method,

an approximate method, it is desirable to examine the avallable exact
solutions of the boundary-layer equatlens to determine whether solutions
exist that can be used to test the results of reference 2. The exact
solutions of the boundary-layer equations, however, are few, and the only
solutions that were found suitable for use as a test were the solutions
for the flow over infinite wedges.

The method by which the wedge flows are used to test the results of
reference 2 mekes use of the fact that the SBchlichting method states that
the shape of a velocity profile 1s completely determined by the local
value of the nondimensional pressure gradient. The previous history of

~
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the boundary lsyer enters only indirectly. Therefore, the result of
reference 2 can also be stated in a different manner. Thus, consider
two incompressible flows with the same kinemgtic viscosity and let one
flow contain a point such that the velocity outside the boundary layer
and the pressure gradient along the surface are equal, respectively, to
the velocity outside the boundary layer and to the pressure gradient at
a point in another flow. Then, if the boundary-layer thickness is mnot
the same at the two points, the thicker boundary-layer velocity profile
can be the more stable one.

In the present investigation a confirmation of this conclusion is
sought by examining the exact solutlons of the boundary-layer equations
for wedge flows, the special set of flows in which the velocity outside
the boundary layer veries as the distance from the stagnation point
ralsed to a power. Numerical solutions of the boundary-layer equations
for these flows have been given by Hartree (ref. 3).

Whether the results of reference 2 are always valid is not
tested in the present work because the wedge flows satisfy a basic
assumption of the Schlichting method; namely, that the veloecity profile
is a single-valued function of the local effective pressure gradient.
Therefore, if in certain cases the rate of change of the velocity pro-
file along the surface would make inaccurate the assumption that the
velocity-profile shape depends only on the local effective pressure
gradient, significant errors might be introduced into the results of
reference 2. These errors cannot be uncovered by the use of the wedge
flows. The wedge flows consequently provide only a partial test of
the results of reference 2.

In the present investigation information is also obtained concerning
the effect on the conclusions of reference 2 of replacing the Schlichting
single-parameter family of velocity profiles by the Hartree single-
parameter famlly of velocity profiles. This portion of the investigation
is desirable because the critical Reynolds number is sensitive to the
shape of the velocity profile. An accurate numericel calculation, based
on Lin's rapid method, is made of the critical Reynolds numbers of all
the Hartree velocity profiles. The present investigation 1s restricted
to the case of no flow through the surface.

SYMBOLS
a constant, equal numerically to velocity at x=1
2
as=P
a = —=
U

(e}
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coefficients in expression for g

reference length

function of Y

g =2 = C, + C1K + Ck2

=1 B

it
odl Iql

OC::l

1}
tqgg

height of roughness particle

Schlichting velocity-profile shape parameter
velocity in direction of X

velocity at outer edge of boundary layer

reference velocity (velocity at distance ¢ from apex of
reference wedge)

velocity of disturbance in boundary layer

velocity at ¥ = h with roughness particle absent

reference Reynolds number, ﬁbE/;

critical Reynolds number, value of Ry at which a small
disturbance is neilther damped nor amplified
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<1

a
Subscript:
W

Primes

roughness Reynolds number, ﬁhﬁ/;

veloelty through surface, positive outward

distance along surface, measured from stagnation point

distance normal to surface, positive outward

y ’ U
nondimensional distance from surface, J —
2 -BYwx

parameter

value of parameter pB for reference wedge

o] -
displacement thickness, f (1 - l_‘-)d&
0 U

a measure of boundary-layer thickness

momentum thickness of boundary layer, me
0

anet

(-

function of Y
stream function
kinematic viscosity

angle between walls of wedge, radians

at surface

denote differentiation with respect to Y; barred quantities

are dimensional.
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ANATLYSIS

Comparison of Wedge Flows

The first portion of the present investigation is restricted to
those incompressible laminar flows for which the velocity outside the
boundary layer is related to the distance from the stagnation point by
the equation

=5
G-az P (1)

which 1s obtained from reference Y4, pages 139 to 142, but put in the
notation of the present paper. There is no flow through the surface
in the present analysis. For B 2 O the flow is that over the inner

or outer face of an Infinite wedge with an angle 20 between the walls
(fig. 1(a)). The relation between « and the paremeter B 1is

a:fﬁ.
2

This relation also occurs, in a different notation, on page % of refer-
ence 5. Only values of B less than 2 have physical significance. For
B <0 (fig. 1(b)) the flow begins at & value of x greater than zero
with a boundary-layer-profile shape that depends on the parameter B.

In the wedge flow_defined by equation (1) the velocity U and the

velocity derivative -@- are single-valued functions of X. Consequently,
ax

two pointe with equal U and g_g cannot be found on the same wedge.

dx
If, however, two wedges with different angles are considered, and if the
velocity at a point on one wedge is properly related to the velocity at
a point on the other wedge, then two points can be found, one on each

wedge, with the same U and -@-I-_{-
dx

In order to find the relation between the wedge angles and the two

points, one on each wedge, that have equal U and %xg, let

U = Uy (2)
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and

©, @

X1
where Uge and <§§> are the nondimensional veloclty and velocity
dx
X2

gradient, respectively, in one flow at x = x,, and le and (%E) are
X
the same quantities in the other flow at x = x,. The reference velgb-
ity U, and the reference length C are the same in both flows. The
reference velocity ﬁb can be chosen as the velocity at a distance ¢
from the apex of a fixed reference wedge of included angle =nf,. The
quentity & (eq. (1)) has the value &g for the reference flow and it is
found from ﬁb, c, and By by the use of equation (1):

_ g,
85 = A
-Q“ao

c

The quantities ﬁb, ¢, and Bo are srbitrary but when once chosen are
fixed.

For B = By, equation (1) becomes

- - - 22B;
U, = &%
‘or
B1.
Ux = alxle-Bl (ll')
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where
_ BL
_ - - 2B
E;=C 8C
a1 = ——= = —
S g,
For B = Bo, equation (1) becomes
P2
>
Uy, = 8% P2 (5)
where
Ba
Uz - = 2P2
Xp=C  apC
&p = = = -
Uo Uy

The condition that U at ;cl be equal to U at 1-c2 (eq. (2)) is
expressed by equating equations (4) and (5):

Pl P2
2- 2-
du - du -
The requirement that — at X; be equal to — at X% (eq. (3)) is
dx ax
expressed by calculating (@) from equation (4) and equating 1t to
dx xl
L) calculated from equation (5). The result is
x/xp
2(Bp~1) 2(B1~-1)
Bo 2-Bo By 2-y

&22_B21{2 =a12_lel (7)
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When equation (7) is divided by equation (6) the result is

X B22-8

X, B 2-Bp

(8)

where, 1in order for equatlon (3) to be satisfied, 51 and Po must be

elther both positive or both negative. Thus, U and w at x = X5,
dx
in a flow with B =gy and a = a,, are equal, respectively, to U

and EE at

v e PLE-F
1= %2 Bo 2 - By

in a flow with B =B, and & =a;. The relation between a; and 8,

is obtained by the use of eguation (8) and either equation (6) or eque-
tion (7). The result is

2(p;~Bo) Po

(2-8,) (2 )512-5-%
TR 25 .

8 = 8y E; 2 - By

Consequently, in the flow over infinite wedges a point on one wedge

can have U and %% equal, respectively, to U and %g at a point on

a wedge of different angle. The arbitrary quantities 81, X3, By,
and P, determine x, and &, by equations (8) and (9). Fixing

the arbitrary quantity a; 1s equivalent to fixing ﬁ/ﬁb at x = c
in the flow for which B = B;. The quantity a, 1s not arbitrary but

is determined by equation (9); the quantity 8o is the value of
ﬁ/ﬁb at X =c on the wedge with B = B,.
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Stability of Laminar-Boundary-Layer

Velocity Profiles on Wedges

The assumption concerning the stability of & laminar-boundary-layer
velocity profile is the same as in reference 2, namely, that the ratio
RBC/RB at a distance x <from the stagnation point is a measure of the

stability of the boundary layer at that value of x and that the boundary
layer becomes more stable as the ratio Ry /Re increases. In order to
c

compare the stabllity of a veloeclty profile at x = X5 with the sta-
bility of a profile at x = x7, it 1s necessary to find Ry and Rec

at both X and Xo.

In order to obtain Ry the definition for 9 is used; the defini-

tion is
'e'=/ E( -E)d&
o U U

The velocity u is obtained from the relations

=
35
1
- 1/2 5”8 1/2
;- \E T 2 R (20)
and
1p
5= [T pa /AP Ay (11)

which are from reference 4, pages 139 to 142, but the notation has been
changed to that of the present paper.
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The result is
B

u = ax= Py (12)

where the function F(Y) satisfies the differential equation (ref. X,
pp. 139 to 142):

F™ 4 FF" - 6|ZF')2 - ]:I =0 (13)

and the boundary conditions
Y¥Y=0 Y —w»
F'=0,F =0 F' — 1

When B = 0, equation (13) becomes the Blasius equation for the flow
over a flat plate (ref. 4, p. 135). When equation (12) is used with
equation (1) in dimensional form,

B
§ = az>P (14)
the result is
Z=F (15)
1§)

By making use of equations (11), (14), and (15), the expression for ©
can be written as

B\ - B\/;wF‘(l - F')ay (16)

X\yv




The expression for Rg then is

|5

Re=

Sk

2 - Bf F'(1 - FY)dy
0

or

Rg =\'Ef_°.\ﬁ£ 2 - sj;wF'(l-F')dx
v

From equation (1) it follows that

2
Ux = a.xz'B
and that
2B o
ue _ a°x2-P 2 -B a.x—2"'_5
au 2(p-1) B
dx a B x 2-B
2-p
Therefore:
2-p4dU
dx

Expression (17) for Ry can thus be written as

—8 WLMF'(l - Fl)ay

NACA TN 2976

(17)

(18)
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o o]

The integral f F'(1L - F')dY, a function of B, was calculated from
0

table IT of reference 3 by use of Simpson's rule (ref. 6, pp. 120

to 122). All the entries in the table for a specific value of B were

used to get the integral for that velue of B. The function _To

dx

o0}
is shown in figure 2 and the integral f F'(1L - F')dY is given in
0

[eo]
table I. The integral JF (1 - F')a¥, related to the displacement
0]

thickness 5* by the equation

il ‘{_’E=mf°°(1-F')dx
0

X v

is also given in table I.

In order to find the expression for Rg,, the conclusion of refer-

ence 7 that the critical Reynolds number of a velocity profile depends
only on the shape of the velocity profile is used. For wedge flows the
shape of the velocity profile depends only on the value of the param-
eter B (see eq. (13)). Therefore, the critical Reynolds number R,

depends only on f:
Rg, = R, (B)

The critical Reynolds number is calculated by Lin's rapid method
(ref. 8). The critical Reynolds numbers for some of the velocity pro-
files given by Hartree in reference 3 have already been calculated by
ILin's rapid method and are given in figure 2 of reference 9. Because
only the first significant figure of the critical Reynolds number can
be read without estimation from this figure and because critical
Reynolds numbers were calculated for less than half of the profiles
glven by Hartree in reference 3, the critical Reynolds numbers are com-
puted in the present work for all the Hartree profiles.
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Lin's simplified formula for Rec is

4

6 = -E (19)

U

Iddﬁl

axkﬁ

which is taken from reference 8 but has been put in the notation of the
present paper.

This formula is to be put in & form that contains the variables F

and Y of equation (13). The usé of equations (11), (14), (15), and (16)
leads to

o

F'(1 - F')ay (20)

o/
e

Q/

m|F<J

]

=
é“j

- The term ﬁclﬁ in equation (19) is the value of ﬁ/ﬁ for which
the relation

5a
o|—2
2L o<
G 8
| —a | |3 - —— (21)
oL !
8, G
(from ref. 8) is satisfied.
From equations (11), (1k4), and (16) the relation
I 2 (22)
® ‘jF F'(1 - F')dy
0

is obtained.
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By using eguations (20) and (22) the relation

is obtained.

The equetion for ﬁclﬁ (eq. (21)) can now be written as

2F " FIF"I
(3 - "Y> - 0.58 (23)
F' (F")3

and the equation for Rg, (eq. (19)) can be written as

25F " F'(1 - F')ay
0

Ry = (24)
O (Fc,)u.

where Fc' is the value of F' for which equation (23) is satisfied.

The values of Fy'" given in table II were taken from Hartree
(table II of ref. 3, where F," is called y"(0)). The integral

+ 00
J[ F'(1L - F')dY bes already been computed (see eq. (18) and table I).
0

A deteiled description of the computation of Fc‘ is given in the

appendix. For B 2 -0.14, numerical differentiation of Hartree's tab-

ular values of F' (y' in Hartree's notation) was not used to find F*"
and F"' in the equation for F,.' (eq. (23)). : Instead, the func-

"tion F' was expanded from Y = 0 in a Taylor's series and the deriva-
tives of F' were found by differentiating the series. This procedure
is believed to result in more accurate values of F,', and hence of Rees

than could have been obtained by numerically differentiating Hartree's
tabular vaelues to find F" and F'"™. The variation of Rg, with B,

calculaeted by the equation for Rec (eq. (24)), is shown in figure 3.
The values of Re; are also given in table II.
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The ratio Rg,|Rg can now be found by dividing equation (24) vy

equation (18); the result, , is shown as a function of B in

figure 4. Figures 2 and 4 can be used to determine whether the flows
defined by equation (1) contain points with equal U and %g and with

the property that the point with the larger value of © has the larger
value of RGC/R65 the value of R, is the same for all the flows. TFig-
ure 2 shows that when two points have equal values of R,, U, and %g
but different values of B, the point that has the larger absolute value
of B has the larger velue of Ry. It is recalled that because of

equation (3) both values of B have the same sign. TFigure 4 shows that
du
for points with the same values of R, U, and == the value of Ry c/Re

increases with p for B > 0.05. Therefore, for B > 0.05 the point
with the larger value of Ry has the larger value of Rec/Re; thus, of

two points with equal values of U and ‘;—2 in flows with equal R,, the
point with the larger value of © can have the more stable velocity pro-
file. The exact solutions of the boundary-layer equations for a speclal
type of pressure distribution thus confirm a result of reference 2.

Comparison of Predictions of a Method Based on the Hartree
Profiles With Predictions of the Schlichting Method

The purpose of the second part of the present investigation 1s to
determine whether replacing the Schlichting single-parameter family of
velocity profiles (ref. 1) by the Hartree single-parameter family of
velocity profiles (ref. 3) would leave the conclusions of reference 2

essentially unchanged.

The investigation is made by first determining whether or not an
approximate method based on the Hartree velocity profiles predicts that
an increase in boundary-layer thickness alone at & point can increase
the stability of the boundary layer at that point. The values of Rec

for the Hartree profiles are then compared with the values of Rec for

Rec

the corresponding Schlichting profiles, and the curve of ﬁg— c

S
dx

the Hartree profiles is compared with that for the Schlichting profiles.

for
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Of interest also i1s a comparison of the rate of change of the velocity-

profile shape parameter and of the stablility parameter gzg

change in boundary-layer thickness. Finally, the rate of change of the
local roughness Reynolds number with change in boundary-layer thickness
is calculated for the Hartree profiles and compared with that for the
Schlichting profiles. In order to set up a method based on the Hartree
profiles, only the boundary-layer momentum equation (ref. 4, p. 133) and
equation (18) need be used. Equation (18) states that the local value

of —28_ determines the local value of B. Positive values of B
U°R,

|
dx
occur for positive values of %E. The determination of B completely

determines the local state of the boundary layer. A method based on
the Hartree profiles is given in references 10 and 11.

In order to determine whether or not an approximate method based
on the Hartree velocity profiles predicts that an increase in boundary-
layer thickness elone at & point can increase the value of Rac/Re at

that point, only figures 2 and 4 need be used. In figure 2 is shown the

R
connection between B and ———9——; the figure shows that B increases
U9R,
U

£
Ry

U°R,

I%gl
d
as 6 increases, when B is positive and R,, U, and W are fixed.

as

increases when B 1is positive. Therefore, B increases

R
Figure 4 shows how the stability parameter —99 depends on B;

for B > 0.05 an increase in B Increases —=

increase in 0, with R,, U, and du fixed, results in an increase
ax

in B, and consequently, for B > 0.05, in an increase in RGCIR6° On
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the other hand, the combination of figures 2 and 4 shows that when
0 <B «<0.05 & small increase in 6 results in a decrease in Rec/Re.

This behavior is the same as that found in reference 2.

Roe
Rg

in reference 2 as functions of the Schlichting velocity-profile param-
Ro. |UPR
R i‘ll

o \|&
ent investigation as functions of @, both X and B are replaced by
e parameter called x by Schlichting (ref. 1) and k in reference 2.
The parameter k is the value of the nondimensionsl pressure gradient
(ref. 2):

In order to compare the curves for RGC and

eter X with the curves for Rec and obtained in the pres-

2

1
c

&

(25)

K
W

j>o)
E1e

The relation between B and k can be obtained by combining equa-
tions (18) and (25); the result is

2
k=g [fo‘”wu - F'mﬂ (26)

The relation between XK and k 1is (ref. 2)

k = g2(X + 1) () =0) (27

Therefore, the value of B and the value of X +that occur together for
any value of k satisfy the equation obtained from equation (26) and
equation (27); thus,

2
(X + 1) -Bg F*(l-F*)d{‘ =0
0
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Wwhere

g = Cp + C1K + CoK°

The values of C,, C;, and C, are given in reference 1. The values
of B and K that occur together are therefore given by the equation

- 2
(co + CiK + 02K2)2(K +1) -8 l:[o F'(1 - F‘)d{' =0 (28)

For each value of B for which Hartree gives a velocity profile (ref. 3)
the corresponding value of K was found from equation (28) by a process
of successive approximation. The variation of B and K with the non-
dimensional pressure gradient k is given in table III and in figure 5.
Figure 6 gives the variation of RBC with k for the Hartree profiles

R
and for the Schlichting profiles. Figure 7 shows how —

both the Hartree and the Schlichting profiles depends on k. Because
the abscissa k in figures 6 and 7 is a function of B &alone, fig-
ures 6 and 7 can also be Interpreted as a comparison between the exact

values of Rec for wedges and the approximate values

U"Re
|®
dx

of Rec and calculated for these wedges by meking use of

RC
||
ax
Schlichting's method (ref. 1).

In order to find how dB/dRe, the rate of change of profile shape
paremeter with change in boundary-layer thickness, depends on @, equa-

tion (18) is used. The result for Ry %ﬁ— is

Rg
Ry 2B - a (29)
g B -d;-wa'(l - F)aY + =
dg Jg 2

l;wF'(l - F')dy
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The quantity F'(1 - F')dY has already been calculated. In order to

calculate F'(1 - F')dY, a table of divided differences was formed

fw
0
d o
&,
d o]
with B as the independent variable. The derivative EE f F'(1 - F')ay
o
was found from the table by use of the formuls of example 4, page 217 of

reference 6. The function Ry B is shown in figure 8. In the same

Ry

figure is shown Ry ég— for the Schlichting profiies, taken from refer-

oRg

ence 2. Although the ratio of Ry %;Le to Re %.: becomes large as k

Re
au
. dx
is about the same for the Schlichting and Hartree profiles for most of
the range of kj; thus

R
departs from zero, the rate of change of O¢ with Ry (really o)

but

therefore

= 2k (Re, U, and % fixed)
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and

(30)

Because figure T shows to be about the same for both the

Bartree and the Schlichting velocity profiles over most of the range of k,

it follows from equation (30) that the rate of change of 325

ax
with © 1s also about the same for the Hartree and Schlichting profiles.
In the reglon near k = 0.015, however, there are differences; the deriva-

tive Re is positive for the Hartree profiles for values

dRg

of k for which it is negative for the Schlichting profiles.

The effect of an increase in boundary-layer thickness on the rough-
ness Reynolds number Ry 18 obtalned by substituting the expression

Fw"f F'(1 - F')ay
0

for the term £(K) in equation (16) of reference 2. The equation
R
. for 9 S—— for the Hartree profiles becomes, after a development
Ry, ORg

parallel to that of reference 2,

2222’1 l+Re F"f F'(l-F'd%‘ - - (31)
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oR

Figure 9 shows how ;2-3§§ varies with the nondimensional pressure gra-
h

dient k for both the Hartree and the Schlichting velocity profiles;
the values for the Schlichting profiles are taken from reference 2. The
use of either the Hartree or the Schlichting velocity profiles leads to
the conclusion that an increase in boundary-layer thickness decreases the
roughness Reynolds number.

The information contained in figures 6 to 9 indicates that a method
based on the Hartree profiles should predict essentially the same effects
of an increase in boundary-layer thickness as the calculations of refer-
ence 2, which made use of the Schlichting method. TFor example, a calcu-
lation made by the Schlichting method predicts that if the value of 6
at 35 percent of the chord from the leading edge of the NACA 64A010 air-

foil at a Reymolds number of 107 is multiplied by 3.45, the value of Ry
is increased from 1,221 to 4,208 and the value of Rg /Ry 1is increased

from 0.239 to 1.0 (see p. 23 of ref. 2). A calculation made by the use
of the information for the Hartree profiles in figure 7T predicts that
this value of 6 should be multiplied by 3.27 to Increase RGC/RG

from 0.210 to 1.0; the value of Ry 1s increased from 1,221 to 4,000.

U°R, 7
o at this position of the airfoil for R, = 10! is
&

equal to 14,260.
DISCUSSION

The numerical solutions of the boundary-layer equations for the
flow over Infinite wedges are used to show that a thick velocity profile
on one wedge can be more stable than a thin profile on another wedge,
although the velocity outside the boundary layer and the pressure gra-
dient along the surface are the same for both profiles. A result of
the calculations of reference 2, which were based on the approximste
Schlichting method, is thus confirmed for a special type of flow.

It is noted, however, that the wedge flows defined by equation (1)
satisfy & basic assumption of the Schlichting method, namely, that the
velocity-profile shape at any point on the surface, for no flow through
the surface, is determined by the value of k at that point. ZEqua-
tion (26) shows that for wedge flows the shape of the velocity profile
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is indeed a function of k only. For these flows k is independent

of x and depends only on the wedge angle; for a fixed wedge angle there
is thus no change in k or in velocity profile along x. On the other
hand, in regions in which k +varies rapidly along the surface and in
which, consequently, the basic assumption of the Schlichting method that
the velocity-profile shape depends only on Xk 18 not satisfied, the
predictions of the Schlichting method will probably be less precise than
for the wedge flows. For example, a discontinuity in the distribution
of k camnot result in a discontinuous change in the shape of the
velocity proflle. The profile shape predicted by the Schlichting method
can, however, be expected, in a region of falling pressure, gradually to
approach a shape that is in the neighborhood of the correct one as the
distance downstreem from the discontinuity in k is increased.

The result of the second portion of the analysis is that a method
for the calculation of the boundary layer based on the Hartree profiles
should indicate essentlally the same effects of an increase in boundary-
layer thickness as the calculations of reference 2, which were based on
the Schlichting method. This result makes the conclusions of reference 2
appear to be less dependent on the particular single-parameter family of
velocity profiles chosen by Schlichting; one of the weaknesses of the
analysis of reference 2 is that it is based on & particular single-
parameter family of velocity profiles and that Rec 1s sensitive to

the shape of a velocity profile.
CONCLUSIONS

The result is obtained -that in flows over Infinite wedges cases
occur for which a thick boundary-leyer velocity profile on one wedge is
more stable than a thinner profile on a wedge of different angle, although
the velocity outside the boundary layer and the pressure gradient are the
same for both profiles. This result confirms a conclusion previously
reached by the use of Schlichting's approximate analysis, namely, that
in a region of falling pressure the stability of a thick velocity profile
can be greater than that of a thin profile when the velocity at the edge
of the boundary layer and the pressure gradient are the same for both
profiles. ) )

The investigatiop also leads to the ipference that the calculated
effects of a change in boundary-layer thickness on the stability and on
the local roughness Reynolds number should be essentially unchanged by
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replacing the Schlichting single-parameter family of velocity profiles
by the Hartree single-parameter family of velocity profiles.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., Moy 11, 1953.
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APPENDIX
1
CALCULATION OF F,' AND RGC

In order to compute F,' it is necessary first to compute F"

and F"' over a range of Y Ilarge enough for equation (23) to be
satisfied at one point in this range. The computation of F" and FM
wes made by first expanding the function F' 1in a Taylor's series from

Y = O0; the series, to Yl3, is

14 n-1
FOY
F' o= E —_ (32)
n=1 (n - ! ’

where pr means the nth derivative of F at Y = 0. The derivative
of the series for F' results in the series for F":

Z o (33)

and the derivetive of the series for F" results in the series for F'':

1L FwnYn-j
T . A (34)
n=3 (n = 3) .

The coefficients pr are obtained by successively differentiating equa-

tion (13) and using the boundary conditions at Y = O. Thus, directly
from equation (13) and the conditions
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there results:
Fw m = _B

The first derivative of equation (13) is

FIV + FF"™ 4+ F'F"(1 - 2B) = 0O

The boundary conditions et Y = O then lead to

w =0

This process was repeated over and over until FQXIV was obtalned. The
coefficients are listed in teble IV. The quantity F_" depends only
on B and is listed in teble II; these values of F_" were taken from
reference 3 (where the symbol y"(0) was used instead of F.").

The series (32), (33), and (34) were used to calculate F', F",
and F'" by using the value of F_ " given by Hartree (ref. 3) for

each value of B. For B 0, the series (32), (33), and (34) were
assumed to be valid representations of F', F", and F"' from Y =0

to the largest value of Y at which the magnitude of the last term in
the series for F'"™ was less than 0.00005. For B = ~0.10 the cri-
terion was relaxed to allow 0.00008, and for B = -0.1% the value 0.00013
was allowed. For values of Y less than the largest values of Y at
which these re ements were satisfied, the values of F' calculated

by the series (32) did not show a consistent departure from Hartree's
tabulated values (ref. 3).

In order to calculate Y., the value of Y at which equation (23)

is satisfied, equations (33) and (34) and the velues of F," and F'
glven by Hartree (ref. 3) were used to calculate the left-hand side of
equation (23), called @, for a range of Y large enough to include

velues of @ greater than 0.58. For values of -0.1k < B< 2.4, the
computation of Y, and F,' then consisted of an iteration procedure

in which Y, was first estimated by applying a divided-difference
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method (ref. 6, ch. 7) to the calculated values of @. A new value

of § for this value of Y, was computed by calculating F', F",

and F' for this value of Y from equations (32), (33), and (34).
If ¢ was not equal to 0.58 the procedure was repeated and use was

made of the new values of ¢ and Y in the divided-difference pro-
cedure. This iteration procedure resulted in values of Y. for

which ¢ was equal to 0.5800 + 0.000L for all values of B for which
-0.1k £ B < 2.4. The last iteration for Y, also gave the final value
of F.'. :

For B = -0.16, -0.18, and -0.19 the Taylor's series is not valid
to Y,. In these cases the values of F' in Hartree's table (ref. 3)

were used to form difference tebles. Iun most cases third differences
were used. These difference tables were used with Newton's and Gauss'
formulas (ref. 6{ pp. 160 to 170) to compute the values of F" and F".
The values of F"' and F'"' computed by the Newton and Gauss formules
were smoothed by one application of the T-point formula on page 278

of reference 6. These smoothed values of F" and F'" were used with
Hartree's tabular values for F' (ref. 3) to compute ¢. The value

of Y for ¢ = 0.58 was then found by inverse interpolation, for which
a divided-difference formula wes used (ref. 6). For this value of Y,
called Y,, the value of F', called F.', was found by interpolation

from the difference tables; third differences were used.

Once F,' was calculated, the critical Reynolds number was com-
puted from the equation for Ry, (eq. (24)). The variation of Rg,

with B 1s shown in figure 3. The values of Rec are also given in

table II, together with Hartree's velues (ref. 3) of Fw". The values
of Rec in table IT are believed to be accurate to about 6 in 10,000

for -0.14 <B <2.4h. This estimate of the accuracy is based on an
estimate of the effect on the calculated value of Rgc of a small dif-

ference in ¢ from 0.5800. For B < -0.16 the values of Rg, &are

probably accurate to the number of significant figures given in the
table. These estimates of the accuracy concern only the numerical pro-
cedure and do not include the effects on Rec of any inexectness in

Hertree's values of F_" or of any inexactness in Lin's formula (eq. (19)).

In the course of the computations it was noted that the value 0.8860
at x = 1.6 (Hartree's notation, ref. 3) and B = 0.5 did not seem to
be consistent with neighboring values. An interpolation which made use
of the other values in the vicinity gave 0.8760 instead of 0.8860. The
value 0.8760 was used in the computations of the present analysis.
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TABLE T

[o0]
THE INTEGRALS Jf F'(1 - F')ay AND

0

VARIOUS VALUES OF B

Jf (1 - F')ay TFOR
0

B Jf F'(1 - F')ay JF (1 -rFYay
0 0
2.4 0.2149 0.4607
2.0 .2308 497k
1.6 .2502 5439
1.2 .2760 .6068
1.0 .2923 L6479
.8 .3119 .6987
.6 .3358 . 7638
5 .3502 . 8okL
R 3667 .8526
3 .3858 .9109
.2 4080 .9838
d 4354 1.0803
0 4695 1.2167
-.10 .5155 1.443%6
-1k .5388 1.5967
-.16 .5523 1.7076
-.18 5676 1.8712
-.19 5768 2.0070
-.1988 5852 2.3587

“!ﬂ:ﬁ"’
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THE QUANTITIES F_." AND FOR VARIOUS VALUES OF B8
w c

1
FW

B Ro.
(1)
2.4 1.837 6,590
2.0 1.687 6,209
1.6 1.521 5,728
1.2 1.3%6 5,002
1.0 1.2326 4,529
.8 1.120 3,928
.6 .9960 3,132
.5 9277 2,662
A .8542 2,134
3 .TT48 1,551
.2 .6869 963.0
.1 .5870 470.
0 1696 179.5
-.10 .3191 62.3
-.14 .2395 38.4
-.16 .1905 30
-.18 .1285 17
-.19 .086 7
-.1988 o | emaee-
‘ ~TKE

lprom Hartree's table (ref. 3).
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TABLE ITT

31

THE VELOCITY-PROFILE PARAMETERS B8 AND K FOR VARIOUS VALUES

OF THE PRESSURE-GRADIENT PARAMETER k

k B K
0.1108 2.4 -0.4818
.1067 2.0 -.4986
.1002 1.6 -.5237
.09142 1.2 -.5592
.085k2 1.0 -.5839
.0778L .8 -.6159
.06764 .6 -.6597
.06131 .5 -.6877
.05379 L -. 7217
.Ol465 3 - .76k
.03%29 .2 -.8196
.01896 1 -.8934
0 0 -1
-.02658 -.10 -1.176
-. 0406k -1 -1.289
-.04881 -.16 -1.366
-.05800 -.18 -1.470
-.06321 -.19 -1.543
-.06810 -.1988 -1.629
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TABLE IV

COEFFICIENTS IN THE TAYLOR'S SERIES FOR F', F", AND F™
F," = -B
FAY =0
RV = ~(Fy"3(1 - 2p)
FVT = 2r;"p(2 - 3p)
F L = -2p%(2 - 3p)
B = (7 ")3(2 - 28)(11 - 10p)
Pk = -2(F;")2p(k5 - 113p + 668°)
R~ = 16F,"s%(2 - 3p)(8 - 7B)
P = (7)1 - 2p) K29 - 16g)(11 - 10B) + (1 - 2p)(k - 5&3 -

1687(8 - 78)(2 - 3p)
F XTI = (7,")78[3(57 - 288) (45 - 113p + 668°) + (1 - 2p)(11 - 108)(93 - 7253
F AT = _a(F ")2s2 [16(23 - 108)(2 - 3p)(8 - 7B) +

10(13 - 9p) (45 - 113p + 666%) + 6(27 - 288) (1 - 2p)(2 - 3B)]

X - (r)5{2(28 - 119)(1 - 2) [(29 - 168)(11 - 108) + (1 - 2) (4 - 5p)] +

3139 - 1368) (1 - 2p)2(11 - 108)} + &r, "> [(28 - 11p)(8 - 7B)(2 - 3p) +

L4(8 - 5p)(2 - 38)(8 - TB) + 3(271 - 288)(2 - 55)2] _‘.E!
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(p) B <o.

Figure 1.- Flow over the walls of a wedge.
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Figure 3.- Variation of the critical boundary-layer Reynolds number Rg
c
with the velocity-profile shape parasmeter B.
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Figure 5.~ Variation of the velocity-profile shape parameters B and K
with the nondimensional pressure gradient k.
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Figure 6.~ Variation of the critical boundary-layer Reynolds number Rec
with the nondimensional pressure-gradient parsmeter k for the
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